Install Conda and Python
- Connect to Amarel Open OnDemand
- Click Clusters
- Choose Amarel Cluster Shell Access
- Enter your password
- In the terminal, do the following commands (one line each time). If you're using Windows, type 'Ctrl+c' to copy and 'Ctrl+Shift+v' to paste command.
$ module use /projects/community/modulefiles
$ module load anaconda/2020.07-gc563
$ cd
$ source .bashrc
$ mkdir -p .conda/pkgs/cache .conda/envs
- Test if conda is successfully installed:
$ which conda
- Install a conda environment called 'rcaes_env':
$ conda create -n rcaes_env
- Enter Y to proceed. Wait until you see the following. It may take a while.
#
# To activate this environment, use
#
# $ conda activate rcaes_env
#
# To deactivate an active environment, use
#
# $ conda deactivate
- Now let's activate the environment:
$ conda activate rcaes_env
- First, let's install essential packages
conda install -c conda-forge python=3.9 jupyter jupyterlab notebook numpy scipy ipython
- Next, let's install github CLI, a command-line interface to GitHub for use in your terminal or your scripts
conda install -c conda-forge gh
-
Next, go back to Amarel Open OnDemand. This time, we will launch a personal jupyter. Click on 'Interactive Apps', choose 'Personal Jupyter'.
-
Settings for Personal Jupyter:
Number of hours: 10
Number of cores: 1
Gigabytes of memory: 10
Partition: main
Leave Reservation and slurm feature blank
conda path: /projects/community/anaconda/2020.07/gc563
conda environment: rcaes_env
Conda Alternative: Mamba
-
If you find Conda super slow at solving the environment, I'd recommend you try using an alternative package manager Mamba.
-
Install Miniforge using:
wget "https://github.com/conda-forge/miniforge/releases/latest/download/Miniforge3-$(uname)-$(uname -m).sh"
bash Miniforge3-$(uname)-$(uname -m).sh
-
Close and reopen the terminal window.
-
Create a new environment
rcaes_env_new
:
mamba create -n rcaes_env_new python=3.9 jupyter jupyterlab notebook numpy scipy ipython pandas matplotlib cartopy geopandas xarray dask netCDF4 bottleneck gh
-
Next, go back to Amarel Open OnDemand. This time, we will launch a personal jupyter. Click on 'Interactive Apps', choose 'Personal Jupyter'.
-
Settings for Personal Jupyter:
Number of hours: 10
Number of cores: 1
Gigabytes of memory: 10
Partition: main
Leave Reservation and slurm feature blank
conda path: /home/YOURNETID/miniforge3
conda environment: rcaes_env_new